PRGN-3005 UltraCAR-T®: Multigenic CAR-T cells generated using non-viral gene delivery and rapid manufacturing process for the treatment of ovarian cancer

Tim Chan1, Marion Chakiath1, Lindsey Shepherd1, Simon Metenou1, Fernando Carvajal-Borda1, Jose Velez2, Adeline Govekung1, Jacques Plummer1, Carol Poortman1, Xiaohong Ma1, Rutul R. Shah2, Mary L. Disis2, Helen Sabzevari1

1Precigen, Inc., Germantown MD, 20876 2University of Washington School of Medicine, Seattle WA

PRGN-3005 targets MUC16 on tumor cells

mbl15 expression on PRGN-3005 does not promote bystander proliferation

PRGN-3005 demonstrates MUC16 specific cytotoxic activity and cytokine expression

PRGN-3005 is engineered to simultaneously express MUC16 CAR, mbl15 and Kill Switch

PRGN-3005 demonstrates significant anti-tumor activity, CAR T cell persistence and expansion in vivo in a preclinical ovarian cancer model

Overview of PRGN-3005 UltraCAR-T production with an overnight manufacturing process

Conclusions

• The UltraCAR-T® platform provides a non-viral gene transfer and rapid manufacturing approach to enable improved potency, safety and scalability of CAR-T therapies.

• PRGN-3005 UltraCAR-T cells simultaneously co-express MUC16 CAR, mbl15 and a kill switch to generate a uniform, homogenous cell product and exhibit robust MUC16 specific cytotoxicity to tumor cells.

• Unlike conventional CAR-T cells (mbl15-negative), a single administration of PRGN-3005 UltraCAR-T, even at a lower dose, one day after gene transfer, effectively eliminated tumor cells in an ovarian mouse model.

• PRGN-3005 UltraCAR-T demonstrated significantly higher expansion and persistence in ovarian tumor bearing mice and maintained preferred memory-like T cell phenotype in vivo compared to conventional MUC16 CAR-T cells.

• PRGN-3005, after a single administration, showed long term persistence in vivo and effectively eliminated tumor upon re-challenge more than three months after PRGN-3005 administration.

• The first-in-human Phase 1 clinical trial of PRGN-3005 UltraCAR-T for treatment of patients with advanced, recurrent platinum resistant ovarian, fallopian tube or primary peritoneal cancer is in progress (ClinicalTrials.gov: NCT03907527, scan QR code).

Introduction

• Traditional methods for chimeric antigen receptor (CAR) T cell generation have involved viral vectors and periods of ex vivo cell expansion, prolonging the waiting period between apheresis and administration of CAR-T therapy to a patient and resulting in high manufacturing costs with a centralized manufacturing process.

• Precigen’s UltraCAR-T® platform is based upon an advanced non-viral multigenic delivery system and rapid manufacturing process with high cell scalability for administration of autologous CAR-T cells one day after gene transfer.

• UltraCAR-T® cells offer potential for enhanced potency, safety and scalability:
 • Potency: multigenic expression that includes membrane-bound IL-15 (mbl15) expression to provide improved cell persistence and maintenance of memory and stem cell-like/naïve phenotype.
 • Safety: non-viral gene delivery and ability to eliminate the CAR T cells through expression of a kill switch and mediated by administration of a kill switch activator.
 • Scalability: rapid manufacturing with no ex vivo expansion for treatment of patients one day following gene transfer.

• Ovarian cancers, are often detected at later stages with a high incidence of tumor recurrence. Current treatment options for recurrent ovarian tumors are limited and not specific for a tumor antigen.

• Mucin 16 (MUC16) is overexpressed on over 80% of ovarian tumors with limited expression found in healthy tissues.

• MUC16, a large membrane bound glycoprotein, can shed from tumor cells; however, PRGN-3005 recognizes the non-shed MUC16 retained on cell surface.

• PRGN-3005 UltraCAR-T is a multigenic autologous CAR-T cell treatment simultaneously expressing a CAR optimized to preferentially target MUC16 on tumor cells, mbl15, and a kill switch.